The Necessary Maximality Principle for c. c. c. forcing is equiconsistent with a weakly compact cardinal

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Necessary Maximality Principle for c. c. c. forcing is equiconsistent with a weakly compact cardinal

The Necessary Maximality Principle for c.c.c. forcing with real parameters is equiconsistent with the existence of a weakly compact cardinal. The Necessary Maximality Principle for c.c.c. forcing, denoted 2mpccc(R), asserts that any statement about a real in a c.c.c. extension that could become true in a further c.c.c. extension and remain true in all subsequent c.c.c. extensions, is already tr...

متن کامل

The Necessary Maximality Principle for c . c . c . forcing is equiconsistent with a weakly compact cardinal Joel

The Necessary Maximality Principle for c.c.c. forcing with real parameters is equiconsistent with the existence of a weakly compact cardinal. The Necessary Maximality Principle for c.c.c. forcing, denoted 2mpccc(R), asserts that any statement about a real in a c.c.c. extension that could become true in a further c.c.c. extension and remain true in all subsequent c.c.c. extensions, is already tr...

متن کامل

On C-maximality

This paper investigates a connection between the semantic notion provided by the ordering C∗ among theories in model theory and the syntactic (N)SOPn hierarchy of Shelah. It introduces two properties which are natural extensions of this hierarchy, called SOP2 and SOP1. It is shown here that SOP3 implies SOP2 implies SOP1. In [Sh 500] it was shown that SOP3 implies C ∗-maximality and we prove he...

متن کامل

On certain maximality principles

‎We present streamlined proofs of certain maximality principles studied by Hamkins‎ ‎and Woodin‎. ‎Moreover‎, ‎we formulate an intermediate maximality principle‎, ‎which is‎ ‎shown here to be equiconsistent with the existence of a weakly compact cardinal $kappa$ such that $V_{kappa}prec V$‎.

متن کامل

Cardinal invariants for C-cross topologies

C-cross topologies are introduced. Modifications of the Kuratowski-Ulam Theorem are considered. Cardinal invariants add , cof, cov and non with respect to meager or nowhere dense subsets are compared. Remarks on invariants cof(nwdY ) are mentioned for dense subspaces Y ⊆ X.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: MLQ

سال: 2005

ISSN: 0942-5616,1521-3870

DOI: 10.1002/malq.200410045